Paul Dagdigian

Paul Dagdigian

Arthur D. Chambers Professor

Remsen B42
410-516-7438
pjdagdigian@jhu.edu
Curriculum Vitae
Google Scholar Profile

Biography
Research
Teaching
Publications

Paul J. Dagdigian received his undergraduate education at Haverford College and did his Ph. D. dissertation research in physical chemistry at the University of Chicago under the direction of Professor Lennard Wharton. This was followed by two years of postdoctoral research with Professor Richard Zare at Columbia University. It was in Zare's laboratory that he first used lasers in his research. He began his academic career in 1974 at the Department of Chemistry at Hopkins, where he is currently Arthur D. Chambers Professor of Chemistry. He served as chair of the department from 1998 to 2005. He was an Alfred P. Sloan Fellow and a Camille and Henry Dreyfus Teacher-Scholar. He is a Fellow of the American Physical Society and served for two years as Chair of the Division of Chemical Physics. In 2007, the Maryland Section of the American Chemical Society designated Dagdigian as the Maryland Chemist of the Year.

Dagdigian’s research is concerned primarily with the molecular dynamics of gas-phase collisional phenomena. The theme of this work has to gain an understanding of the potential energy surfaces of interaction and their effect on the motion of the nuclei. This work includes the study of chemical reactions and non-reactive energy transfer processes, particularly those involving small molecular free radicals.

Professor Dagdigian has employed various laser spectroscopic techniques for the study of the dynamics of gas-phase collisional processes and for the sensitive detection of trace concentrations of molecules such as explosives. Areas of research interest include the study of the dynamics of molecular collisional processes, including rotational and vibrational energy transfer, photodissociation, and chemical reactions, involving diatomic and small polyatomic free radicals.

Chemistry in many environments, including combustion, is mediated by small molecular free radicals. Knowledge of the chemical kinetics and relaxation pathways in conditions far from equilibrium depends critically on our ability to model accurately inelastic and reactive collisions involving radicals. Dagdigian’s group has been employing both experimental and theoretical approaches to gain a detailed understanding of such processes.

Our group has employed laser spectroscopy to prepare and probe specific quantum states (ro-vibrational levels) of molecules for the study of the dynamics of gas-phase collisional processes. It is also important to be able to compute rate constants for state-to-state rate constants since these cannot always be measured for the conditions of interest. Our group has been employing state-of-the art quantum chemistry methods to compute the potential energies of interaction and have used these in quantum scattering calculations of the relevant cross sections and rate constants of a variety of collisional processes.

Dagdigian’s group has also explored the use of several laser spectroscopic techniques, including cavity ring-down spectroscopy (CRDS) and laser-induced breakdown spectroscopy (LIBS), for the trace detection of explosives. For the latter technique, we have worked to develop an understanding of the chemical and physical processes which lead to the observed optical emission from laser-induced plasmas.

Professor Dagdigian has been regularly teaching the second semester of Introductory Chemistry (030.102). Topics covered in this course include electrochemistry, kinetics, transition metal compounds, and a brief introduction to solids. A major portion of the course is devoted to a presentation of modern chemical bonding theory and application to small molecules and transition metal coordination complexes. Several years ago, he and Teaching Professor Louise Pasternack obtained funding from the Gateway Science program to expand the PILOT peer-led team learning program to Chemistry.

Professor Dagdigian has also been teaching a upper-level undergraduate/graduate course on Spectroscopy (030.451). In this course, the basic concepts of quantum mechanics, as illustrated in the second semester of Physical Chemistry, are employed to understand the spectra of atoms and small molecules.

Displaying the 20 most recent publications. View the Google Scholar Profile for complete publications list.

Note: Please refresh the page if no publications initially appear.

PJ Dagdigian
Pressure broadening calculations for OH in collisions with argon: Rotational, vibrational, and electronic transitions
Journal of Quantitative Spectroscopy and Radiative Transfer 189, 105-111, 2017

J Kłos, Q Ma, 马千里, MH Alexander, PJ Dagdigian
The interaction of NO (X 2 Π) with H2: Ab initio potential energy surfaces and bound states
The Journal of Chemical Physics 146 (11), 114301, 2017

PJ Dagdigian
Theoretical investigation of rotationally inelastic collisions of CH (X 2 Π) with molecular hydrogen
The Journal of Chemical Physics 145 (23), 234305, 2016

PJ Dagdigian, J Kłos, M Warehime, MH Alexander
Accurate transport properties for O (3 P)–H and O (3 P)–H2
The Journal of Chemical Physics 145 (16), 164309, 2016

PJ Dagdigian
Quantum Scattering Calculations of Transport Properties for the H–N2 and H–CH4 Collision Pairs
The Journal of Physical Chemistry A 120 (40), 7793-7799, 2016

PJ Dagdigian
Ab initio potential energy surfaces describing the interaction of CH (X 2Π) with H2
The Journal of Chemical Physics 145 (11), 114301, 2016

O Tkáč, AK Saha, J Loreau, Q Ma, PJ Dagdigian, DH Parker, ...
Rotationally inelastic scattering of ND3 with H2 as a probe of the intermolecular potential energy surface
Molecular Physics 113 (24), 3925-3933, 2015

TK Boyson, PJ Dagdigian, KD Pavey, NJ FitzGerald, TG Spence, ...
Real-time multiplexed digital cavity-enhanced spectroscopy
Optics letters 40 (19), 4560-4562, 2015

PJ Dagdigian
Accurate transport properties for H–CO and H–CO2
The Journal of chemical physics 143 (5), 054303, 2015

PJ Dagdigian, MH Alexander, J Kłos
Theoretical investigation of the dynamics of O (1 D→ 3 P) electronic quenching by collision with Xe
The Journal of chemical physics 143 (5), 054306, 2015

LA Garofalo, MC Smith, PJ Dagdigian, J Kłos, MH Alexander, KA Boering, ...
Electronic quenching of O (1 D) by Xe: Oscillations in the product angular distribution and their dependence on collision energy
The Journal of chemical physics 143 (5), 054307, 2015

Q Ma, 马千里, A van der Avoird, J Loreau, MH Alexander, ...
Resonances in rotationally inelastic scattering of NH3 and ND3 with H2
The Journal of chemical physics 143 (4), 044312, 2015

PJ Dagdigian
Combustion simulations with accurate transport properties for reactive intermediates
Combustion and Flame 162 (6), 2480-2486, 2015

H Xu, D Forthomme, T Sears, G Hall, P Dagdigian
Toward Two-Color Sub-Doppler Saturation Recovery Kinetics in CN (x, v= 0, J)
70th International Symposium on Molecular Spectroscopy 1, 2015

HC Schewe, Q Ma, 马千里, N Vanhaecke, X Wang, 王兴安, J Kłos, ...
Rotationally inelastic scattering of OH by molecular hydrogen: Theory and experiment
The Journal of chemical physics 142 (20), 204310, 2015

D Forthomme, ML Hause, HG Yu, PJ Dagdigian, TJ Sears, GE Hall
Doppler-resolved kinetics of saturation recovery
The Journal of Physical Chemistry A 119 (28), 7439-7450, 2015

F Daniel, A Faure, PJ Dagdigian, ML Dubernet, F Lique, G Forêts
Collisional excitation of water by hydrogen atoms
Monthly Notices of the Royal Astronomical Society 446 (3), 2312-2316, 2015

O Tkáč, Q Ma, 马千里, M Stei, AJ Orr-Ewing, PJ Dagdigian
Rotationally inelastic scattering of methyl radicals with Ar and N2
The Journal of chemical physics 142 (1), 014306, 2015

L Ma, 马莉芳, PJ Dagdigian, MH Alexander
Theoretical investigation of the relaxation of the bending mode of CH 2 (X ̃) by collisions with helium
The Journal of chemical physics 141 (21), 214305, 2014

Q Ma, 马千里, J Kłos, MH Alexander, A van der Avoird, PJ Dagdigian
The interaction of OH (X 2Π) with H2: Ab initio potential energy surfaces and bound states
The Journal of chemical physics 141 (17), 174309, 2014